Multimodal image fusion with joint sparsity model

نویسندگان

  • Haitao Yin
  • Shutao Li
چکیده

Image fusion combines multiple images of the same scene into a single image which is suitable for human perception and practical applications. Different images of the same scene can be viewed as an ensemble of intercorrelated images. This paper proposes a novel mul-timodal image fusion scheme based on the joint sparsity model which is derived from the distributed compressed sensing. First, the source images are jointly sparsely represented as common and innovation components using an over-complete dictionary. Second, the common and innovations sparse coefficients are combined as the jointly sparse coefficients of the fused image. Finally, the fused result is reconstructed from the obtained sparse coefficients. Furthermore, the proposed method is compared with some popular image fusion methods, such as multiscale transform-based methods and simultaneous orthogonal matching pursuit-based method. The experimental results demonstrate the effectiveness of the proposed method in terms of visual effect and quantitative fusion evaluation indexes. C 1 Introduction Recently, with extraordinary advances in sensor technology, numerous imaging sensors have been developed in military and civilian applications. The images provided by different sensors of one scenario often present complementary information. An image fusion technique can integrate information from different sensors into a single image. The fused image can preserve the relevant information and reduce the uncertainty and redundancy. Compared with the image provided by the individual sensor, the fused image has several benefits: broadened the spatial and temporal resolution, improved reliability, and increased robustness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multimodal medical image fusion based on Yager’s intuitionistic fuzzy sets

The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...

متن کامل

Image Fusion of CT and MR with Sparse Representation in NSST Domain

Multimodal image fusion techniques can integrate the information from different medical images to get an informative image that is more suitable for joint diagnosis, preoperative planning, intraoperative guidance, and interventional treatment. Fusing images of CT and different MR modalities are studied in this paper. Firstly, the CT and MR images are both transformed to nonsubsampled shearlet t...

متن کامل

Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning

Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of...

متن کامل

Privacy Preserving Multimodal Biometrics in Online Passport Recognition

The biometric recognition systems rely on a single biometric for authentication for a particular user. Unfortunately these systems having some inevitable problems such as Noisy data, spoof attack, on-universality etc and hence it is not used in online passport registration system. In order to rectify the noise in the image, a novel joint sparsity based feature level fusion algorithm is used for...

متن کامل

Joint Sparsity-Based Robust Multimodal Biometrics Recognition

Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advantage of using multiple sources of information for establishing the identity has been widely recognized, computational models for multimodal biometrics recognition have only recently received attention. We propose a novel multimodal multivariate sparse representation method for multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011